Published On: Jue, Nov 24th, 2011

Todo listo para lanzar el rover Curiosity” a Marte

SINC

“El aspecto más importante del Mars Science Laboratory es que, a diferencia de otras misiones a Marte en la que los geólogos solo nos pudieron decir la composición de las rocas y si había habido agua, ahora se van a desarrollar estudios de química orgánica para buscar moléculas o procesos que se asocian con la vida”, explica a SINC Ashley Stroupe, ingeniera robótica en el JPL de la NASA y participante en este proyecto.

“También se observarán muchos otros aspectos del entorno marciano para determinar si pudo haber sido habitable alguna vez “añade la científica”, aportando nuevos enfoques sobre la historia de este planeta y la posibilidad de que la vida apareciera allí, o incluso que todavía exista oculta en alguna parte”.

Para cumplir con sus objetivos, la misión MSL lanzará el próximo 26 de noviembre desde el Centro Espacial Kennedy en Cabo Cañaveral (Florida, EE UU) el roverCuriosity a bordo de un cohete ATLAS V. Está previsto que el vehículo llegue a su destino en agosto de 2012.

Tras un minucioso proceso de selección, los responsables de la misión han elegido como punto de aterrizaje el cráter Gale, de unos 100 km de diámetro y con un montículo central de 5 km de altura. Se cree que en ese terreno se podrá leer gran parte de la historia geológica de Marte, además de que presenta huellas que sugieren que pudo haber sido un lago.

Los tres objetivos de MSL son verificar el potencial biológico de la zona explorada por el rover, investigar los procesos planetarios que ocurren en su superficie y que influyen en su habitabilidad (como el agua, por ejemplo, y caracterizar los niveles de radiación que llegan a la superficie de Marte.

Instrumento con 90% de participación española

Curiosity incorpora diez instrumentos esenciales para cumplir con su misión. Uno de ellos es la estación medioambiental REMS (Rover Environmental Monitoring Station), que registrará datos de presión, humedad, temperatura, velocidad del viento y radiación ultravioleta.

El desarrollo de este instrumento se ha liderado desde el Centro de Astrobiología (CAB, CSIC-INTA) en la colaboración con la Universidad Politécnica de Cataluña (UPC), la Universidad de Alcalá de Henares (UAH) y la empresa CRISA de EADS Astrium.

La participación española en REMS “es de alrededor del 90% (el resto son aportaciones de instituciones de EE UU y Finlandia)”, confirma a SINC Javier Gómez-Elvira, director del CAB e investigador principal del proyecto REMS, que señala cual ha sido el reto más difícil: “Hacer el instrumento lo más compacto posible, integrando y analizando en detalle cada uno de los componentes para asegurar que todos van a funcionar”.

La industria española también ha contribuido al desarrollo de la misión MSL mediante la fabricación de una antena de alta ganancia que utilizará el rover para enviar datos a la Tierra. Este trabajo lo han desarrollador las empresas Astrium-CASA y SENER.

Curiosity (bautizado así por votación popular) pesa cerca de 1.000 kg, tiene el tamaño de un automóvil pequeño y está equipado con seis ruedas. Su velocidad máxima será de 90 metros por hora y está diseñado para explorar, al menos durante un año marciano (686 días terrestres) la superficie del planeta rojo.

Curiosity funcionará con una fuente radiactiva

Se trata de la tercera generación de vehículos todo terreno que la NASA envía a Marte. Sus dimensiones, fuentes de alimentación, capacidades y sistema de aterrizaje le diferencian de sus antecesores. Los dos anteriores llegaron a la superficie marciana protegidos por airbags y se alimentaron con paneles solares, mientras que Curiosity lo hará descolgándose suavemente desde el transportador que lo llevará desde la Tierra y funcionará con una fuente radiactiva.

El vehículo enviará diariamente los datos a los satélites en órbita alrededor de Marte que, a su vez, los redirigirán a la Tierra. Las antenas de la Red de Espacio Profundo de la NASA “entre las que se encuentra una situada en la estación de Robledo de Chavela (Madrid)” recogerán las señales y las enviarán a Pasadena (California, EE UU).

Desde allí se distribuirá la información a los diferentes equipos en EE UU, España, Rusia, Canadá, Francia y Alemania. Los científicos e ingenieros trabajarán conjuntamente para analizar todos los datos y decidir cada día la labor que desempeñará Curiosity al día siguiente.

Los diez instrumentos de Curiosity:

APXS (Alpha-Particle-X-ray-Spectrometer) determinará la composición de las rocas y el suelo.
CHEMCAM (CHEMistry CAMera) es un espectrómetro que también analizará las rocas marcianas.
CHEMIN (CHEmistry and MINeralogy) cuantificará los minerales y la estructura química de las rocas con rayos X.
DAN (Dynamic of Albedo Neutrons) es un detector de neutrones que, indirectamente, mide la cantidad de agua a través de la detección de la cantidad de átomos de hidrógeno que hay en el subsuelo.
MAHLI (MArs HandLens Imager) es un microscopio para obtener imágenes de rocas, suelo, hielo y escarcha.
MARDI (MARs Descent Imager) tomará imágenes de alta resolución en color durante el descenso y aterrizaje en Marte para proporcionar información sobre el contexto geológico del entorno.
MASTCAM (MAST CAMera) es un conjunto de cámaras que recogerán imágenes multiespectro y estereoscópicas, en rangos de distancia que van de los pocos centímetros a varios kilómetros, y vídeo de alta definición (10 imágenes por segundo).
RAD (Radiation Assessment Detector) caracterizará un amplio rango de radiaciones para la posible exploración humana del planeta.
SAM (Sample Analysis at Mars) hará análisis mineralógicos y atmosféricos. Puede detectar un amplio rango de componentes biológicos y analizar isótopos orgánicos estables y gases nobles.
REMS (Rover Environmental Monitoring Station), la estación de monitorización mediambiental del rover. Su desarrollo se ha liderado desde España.



Leave a comment

XHTML: You can use these html tags: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>